Existence of ground state solutions for a Choquard double phase problem

نویسندگان

چکیده

In this paper we study quasilinear elliptic equations driven by the double phase operator involving a Choquard term of form −Lp,qa(u)+|u|p−2u+a(x)|u|q−2u=∫RNF(y,u)|x−y|μdyf(x,u)inRN,where Lp,qa is given Lp,qa(u)≔div(|∇u|p−2∇u+a(x)|∇u|q−2∇u),u∈W1,H(RN), 0<μ<N, 1<p<N, p<q<p+αpN, 0≤a(⋅)∈C0,α(RN) with α∈(0,1] and f:RN×R→R continuous function that satisfies subcritical growth. Based on Hardy–Littlewood–Sobolev inequality, Nehari manifold variational tools, prove existence ground state solutions such problems under different assumptions data.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of ground state solutions for a class of nonlinear elliptic equations with fast increasing weight

‎This paper is devoted to get a ground state solution for a class of nonlinear elliptic equations with fast increasing weight‎. ‎We apply the variational methods to prove the existence of ground state solution‎.

متن کامل

Existence of nontrivial weak solutions for a quasilinear Choquard equation

We are concerned with the following quasilinear Choquard equation: [Formula: see text] where [Formula: see text], [Formula: see text] is the p-Laplacian operator, the potential function [Formula: see text] is continuous and [Formula: see text]. Here, [Formula: see text] is the Riesz potential of order [Formula: see text]. We study the existence of weak solutions for the problem above via the mo...

متن کامل

Existence of a ground state solution for a class of $p$-laplace‎ ‎equations

 According to a class of constrained‎ ‎minimization problems‎, ‎the Schwartz symmetrization process and the‎ ‎compactness lemma of Strauss‎, ‎we prove that there is a‎ ‎nontrivial ground state solution for a class of $p$-Laplace‎ ‎equations without the Ambrosetti-Rabinowitz condition‎.

متن کامل

Existence of positive solutions for a boundary value problem of a nonlinear fractional differential equation

This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.

متن کامل

Existence and uniqueness of solutions for a periodic boundary value problem

In this paper, using the fixed point theory in cone metric spaces, we prove the existence of a unique solution to a first-order ordinary differential equation with periodic boundary conditions in Banach spaces admitting the existence of a lower solution.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Analysis-real World Applications

سال: 2023

ISSN: ['1878-5719', '1468-1218']

DOI: https://doi.org/10.1016/j.nonrwa.2023.103914